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We present evidence that one of the "elementary" one-dimensional cellular 
automata in the sense of Wolfram (rule 22 in Wolfram's notation) involves very 
complex long-range effects, similar to a critical phenomenon. This is in contrast 
to superficial evidence that would suggest that this rule leads to fairly simple 
behavior. 
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1. I N T R O D U C T I O N  

One of the most interesting phenomena in the field of dynamical systems is 
the spontaneous generation of complex structure. This concerns first the 
time,, behavior of chaotic systems with few degrees of freedom. More 
intriguing yet are spatially extended systems that are able to generate 
spatial patterns. For  recent attempts to define the concept of "complexity" 
in such cases mathematically, see Refs. 1 and 2. 

In order to study the phenomenon of spatial pattern formation, it is 
crucial to devise simple models that can be simulated without too much 
numerical effort. A special role is played by cellular au tomata  (CA), which 
are models with discrete-time, discrete-space lattices, and with discrete 
variables at each lattice site. They can be considered as kinetic spin 
systems, and we shall sometimes call "spins" the objects occupying lattice 
sites. In contrast to conventional spin system (e.g., the Glauber model), we 
do not require detailled balance for CAs, we consider deterministic 
evolution rules (although nondeterministic rules can also be studied(3-5)), 
and 'we have discrete time. 
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CAs were introduced quite early by yon Neumann, (6) and have been 
studied ever since (for a good overview, see Ref. 7). But it was only recently 
that an effort was undertaken by Wolfram (8) to search systematically for 
interesting phenomena and to possible behavior in the simplest case of one- 
dimensional automata. He found essentially four types of behavior, ranging 
from very dull patterns to a behavior is conjectured to be able to simulate a 
universal Turing machine and thus to represent the highest possible 
(algorithmic) complexity. 

Among these one-dimensional CAs, the simplest ones are those with 
two states per lattice site and with local evolution rules depending only on 
next neighbors. There are only 256 such rules, called "elementary" by 
Wolfram. (8) They do not seem to contain any case of type 4 behavior 
(universal computer). They are numbered in the following way: write the 
eight outcomes (in one time step) of local neighborhoods 111, 110,..., 000 in 
a row, and read them as the eight binary digits of the number of the rule. 
For instance, rule 22 is the rule defined by 

10 if st(i-1)+s,(i)+s,(i+l)=l 
s,+~(i)= else (1.1) 

Fig. 1. Typical pattern generated by cellular automaton 22. 
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In the present paper, we shall study this rule 22 in detail. When 
starting from a random initial configuration, it seems first that the 
generated patterns in space-time are of limited complexity (see Fig. 1). We 
shall show in the following that this impression is misleading: there are 
very subtle correlations hidden in Fig. 1, associated with very long-range 
effiects. 

We should point out that there is no a priori reason why rule 22 
should behave at all specially. Consequently, we must expect similar 
be]harlot in other deterministic spatiotemporal systems, such as reaction- 
diffusion systems, Benard cells, or chaotic semiconductor devices. In view 
of the subtlety of the effects discussed below, it might be very difficult to 
detect them there. 

2. RULE 22 

In this section, we shall study in detail the evolution under Eq. (1.1). 
In all cases, we shall start with random initial configurations. 

(a) First, we shall discuss in what sense rule 22 shows a sensitive 
dependence on initial conditions. It is only due to this that we can expect 
ergodic behavior and that we are justified in discussing statistical aspects of 
a deterministic evolution. 

Following Ref. 9, we consider two patterns {si(t)} and {s/(t)}, which 
differ at time t = 0 only on one site. Sensitive dependence on initial con- 
ditions means that the region where the patterns are different widens with 
time. A typical run is shown in Fig. 2, where only the difference between 
the two patterns is plotted: a point is black if s i e s ;  there, and white 
otherwise. The Lyapunov exponent 2 is defined (8) as the average speed by 
which the right and left fronts progress. The precise value of 2 was 
estimated by letting the right front propagate as in Fig. 2, but forcing the 
left front to recede with the same speed. Then, we could use periodic boun- 
dary conditions (on lattices with up to 2400 sites) to perform very long 
runs with up to 107 time steps. The value thus obtained was 
2 = 0.7660 +_ 0.0003. More important than the precise number is that these 
calculations show beyond reasonable doubt that rule 22 does have a 
positive 2. 

(b) Next, we computed the average density of "1" and the spatial 
correlation function 

(si(t)  s i+ , ( t ) )  - (si( t)  ) 2 (2.1) 

by averaging over 120 lattices of size 11,000 with random start. The first 
5000 iterations were discarded, and the next 9000 were used for the 
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Fig. 2. Difference pattern between two patterns that at time t = 0 agree everywhere except 
on a single point and are random otherwise. 

averaging. The density was found to be 0.35096 + 0.00001; correlations are 
shown in Fig. 3. 

The fluctuations in Fig. 3 are not statistical (where not indicated, 
statistical errors are smaller than the dots). It  is clear that, even apart  from 
these fluctuations, the correlation does not decay exponentially as one 
might have guessed a priori.  Plotting the data of Fig. 3 on a doubly 
logarithmic plot indicates that a power decay does not fit the trend of the 
data either: a better fit might be obtained, e.g., with an Ansatz involving an 
exponential of the square root of distance, but the fluctuations preclude a 
more definite statement. We might add that density and correlations 
seemed absolutely stationary after ~ 1000 iterations. 

(c) The next calculations were done on lattices with finite width and 
with periodic boundary conditions. On such a lattice, any initial con- 
figuration must ultimately lead to an orbit periodic in time. 

If the width is, e.g., N =  60, more than 80% of all configurations lead 
to the quiescent state (si = 0 for all i). Three typical runs are shown in 
Fig. 4. But the probability of ending in the quiescent state depends very 
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strongly and very irregularly on the width. Results, based on 2000 starting 
configurations for each value of the width N, are shown in Fig. 5. Similarly 
irregular is the average length of the cycle into which the orbits lead. 

On the other hand, the rate with which randomly chosen starting con- 
figurations enter into cycles is surprisingly regular. For any fixed width N, 
the chance to be not yet on the final cycle decreases roughly exponentially, 

P N(I) = e-t/T(N) (2.2) 

The time scales T ( N )  entering here are plotted versus N in Fig. 6. More 
precisely, what is plotted in Fig. 6 is the difference T 2 -  T1, where TI is the 
time at which 50% of all configurations have entered a cycle and T2 is the 
time at which 95% have entered it. We see from Fig. 6 that this time scale 
increase rather monotonically with N, roughly like 

T( N)  oo e ~ (2.3) 

We consider the difference between Figs. 5 and 6 as very striking. 
Figure 5 shows that the precise value of N is very crucial in determining 
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tJhe final cycle into which typical orbits merge. Figure 6, on the other hand, 
suggests that during the transient time the exact value of N is not very 
important. Taken together, these results suggest that the precise value of N 
has a very subtle but still important influence, just as suggested by the 
oorrelations presented above. 

(d) More sensitive to long-range effects than the correlation function 
(2.1) seem to be block entropies. 

Let us consider a string S= {sl, s2,..., SN} of N neighboring spins at 
fixed time t. The probability to find this string at a randomly chosen 
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location is p N { S }  for t ~ oo. The information stored in these N spins is 
then 

H~ ) = - ~  pN{S} log pN{S} (2.4) 
S 

and spatial block entropies are defined as 

h~)-- --N+lU(x) __ H~) (2.5) 

The spatial entropy is then just 

h(X)= lira h~ ~) (2.6) 
N ~ o o  

Temporal block entropies are defined in a similar way, but with an 
important difference. (9~ Instead of a string, we consider a rectangular block 
of N x T spins, of spatial width N and of time length T. Informations H(~!T 
are defined just as in Eq. (2.4), and block entropies are defined as 

The temporal entropy is 

h ( , )  _ H ( t )  _ H ( o  N,T - N,T § 1 N,T (2.7) 

h m =  lim h~! y (2.8) 
N , T ~  oo 

It is well known (9) that h~) decreases monotonically with N, while h(~! r 
decreases with T for any N. Indeed, the difference 

6h~)=h~) -h~)+l  (2.9) 

is just the amount of information by which a spin si+ u at site i + N  
becomes less uncertain if the spin s i gets known, in addition to all spins in 
between. We might call 6h~ ) the Nth-order mutual information in space. 

Results for h ~  are shown in Fig. 7, while similar results for the tem- 
poral block entropies are shown in Fig. 8. Both are based on simulations of 
rather large lattices, with up to 36,000 lattice sites and up to 30,000 time 
steps. We see that both are very slowly but steadily decreasing (this 
decrease was overlooked in the much less extensive simulations of Ref. 10). 
On the other hand, the limit N ~ oe seems to be reached for the temporal 
enropy already at N = 2. This suggests that cylinder sets of width 2 provide 
generating partitions for the temporal entropy. 

We have tried several parametrizations for the N (resp. T) dependence 
of the block entropies. By far the best fits were obtained with power laws 

h~ ~ = const/N ~176 (2.10) 
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O 

and 

h~!v=const /T ~ for N~>2 (2.11) 

Notice that these parametrizations imply that h(X)=h( ')=0.  This means 
that the pattern of Fig. 1 is not truly random, in contrast to its appearance, 
and in spite of the sensitive dependence on initial conditions indicated by 
the positive Lyapunov exponent. Instead of being random, it should be 
called "complex" by the criteria introduced in Ref. 2, since the block 
entropies decay slower than 1/(block length), implying very long and com- 
plex correlations. 

(e) The above results show quite clearly that there are long-range 
effects, but they offer no explanation for them. We shall now present a last 
long-range effect which might also give some clue to the origin of these 
effects. 

Cellular automata are special cases of dynamical systems, with some 
similarities to systems of few continuous degrees of freedom and with some 
striking dissimilarities. Indeed, every CA can be represented by a map that 
maps, e.g., the unit square onto itself. (1~ The main common feature is that 
the unpredictability of chaotic evolution is due to a flow of information (H) 
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from "insignificant" digits of the continuous variables into the significant 
digits. The main difference between CAs and maps like the Henon map is 
that the latter is smooth, while the map corresponding, e.g., to rule 22 is 
highly fractal. As a consequence, nonlinear effects in smooth maps are only 
seen in the "significant" digits, while the information processing in the 
"insignificant" digits is a very simple flow only. (12) A consequence of this is 
a simple relation between temporal entropy, Lyapunov exponents, and 
dimension (which is essentially spatial entropy per digit). (12'~3) Using the 
analogy between maps and CAs, this relation would lead in the present 
case to 

H (t) - H (x) (2.12) N , T - -  N + 2 2 T  

But this relation is in general wrong. It is violated numerically for rule 22. 
Instead, one has only an inequality (9) 

H (t) - < H  (x) (2.13) N , T  " ~  N + 2 Z T  
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The reason for this seems to be that information is not just flowing through 
the sites of a CA, but is manipulated such that there is a loss of information 
at every site. On the one hand this loss implies that very long-range 
correlations can build up, since they are not disturbed by a permanent 
inflow of information, on the other hand it makes the block entropies con- 
verge to zero very slowly. 

Let us be more specific after this rather vague introduction. Consider 
an infinite lattice in a stationary state characterized by spatial block 
probabilities pN{S} .  Consider now the case that two different con- 
figurations containing blocks S(t) and S'(t) lead to the same configuration 
at time t + 1. At first sight, one might argue that this is impossible since 
then the number of different blocks would decrease and the state would not 
be stationary. Now that is not true, due to the infinity of the lattice, but we 
see that the situation is quite subtle. 

It is best to formulate everything in terms of informations. If there 
we, re no correlations of range longer than N, and if two blocks S and S' of 
length N map onto the same block, then we would have an associated loss 
of intbrmation per time step and per lattice site of the order of (~IN{S , S '} ,  
with 

O;I~v{S, S'} = pN{S} log pN{S} + pN{S'} + pN{S, } log pN{S} + pN{S'} 
p {s} pN{S'} 

(2.14) 

(remember that pN{S} is the probability to find block S starting at a given 
lattice site). This leads for a string of length M~> N to an information loss 
ocM. 3IN per iteration. This loss has to be counterbalanced by an inflow of 
infi~rmation of at most 2 bits through the ends of the string. This is clearly 
impossible for sufficiently large M, showing that either our assumption of 
vanishing correlations beyond distance N is wrong, or (~I N must be zero. 

For  rule 22, we found that the shortest blocks leading to the same 
descendents are S t -  {11011} and $2=  {11111}. Indeed, b o t h - - . S 1 . . . a n d  
�9 " S 2 ' " l e a d  to the same string . . . 000 . . - .  Both St and Sa seem to occur 
with nonvanishing probabilities in the stationary distribution. In order to 
apply Eq. (2.14), we consider all blocks of length N =  2n + 5 of the forms 

s =  {Lst R}, s ' =  {LS2R} (2.15) 

where L and R each represent blocks of length n. The total information 
losses 

AIN= ~ Mu{S, S'} (2.16) 
L,R 
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Fig. 9. Quantities AIN [Eq. (2.16)] obtained by summing Eq. (2.14) over all sequences con- 
taining in their middle the strings 11011 (resp. 11111). These two sets of strings map onto the 
same strings in one time step. If there were no correlations of range > N, this would lead to an 
information loss of the order of AIN per lattice site. 

again obtained from simulations, are shown in Fig. 9. Statistical errors are 
smaller than the dots except for N =  21. 

According to our discussion, we would expect A I N  to approach zero as 
fast as the correlations do. The observed very slow decrease of A I  N thus 
indicates very long-range correlations. If long correlations were zero and 
A I  N different from zero, the distribution would contract to a small set of 
low entropy. We find thus that very long-range correlations are necessary 
to prevent the distribution from collapsing to something periodic. The 
result is neither periodic nor truly random. 

3. D ISCUSSION 

We have presented numerical evidence that there are very important 
and nontrivial long-range effects in one seemingly very simple CA. This is 
so in spite of the very simple appearance of patterns created by this CA. 
There are other CAs that produce pictures looking much more com- 
plicated. We might thus conjecture that behavior similar to that found in 
the present paper should be quite ubiquitous in cellular automata and 
maybe also in other deterministic systems such as reaction-diffusion 
systems or hydrodynamic turbulence. 

We have presented very heuristic arguments that this behavior results 
from a nearly contractive motion on the attractor of the system. The type 
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of system we are considering is dissipative and irreversible on the entire 
phase space. But once an orbit is on the attractor, there can be no further 
contraction--otherwise the attractor would not yet be the attractor. In the 
studied case, this further contraction seems to be prevented only by the 
long-range correlations. 

The resulting patterns are then neither periodic nor random, but 
somewhere in between. We propose to call them complex. ~2) Note that the 
concept of "complexity" underlying this statement is not the usual one of 
algorithmic (or computational) complexity used, e.g., in Ref. 1. Instead, it 
is a probabilistic concept. According to algorithmic complexity, all systems 
able to simulate a universal Turing machine (such as Conway's game of 
life ~14~) are in the same complexity class. Preliminary simulations t15) suggest 
that the game of life, started with random configurations, does not lead to 
similar long-range effects as those presented here and is thus in a lower 
probabilistic complexity class. On the other hand, there exist no indications 
that rule 22 can simulate a universal Turing machine. But more extensive 
simulations and better theoretical insight would be necessary to settle this 
problem. 
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